

470 Granville Street, Suite 630, Vancouver, BC V6C 1V5 Tel: 604-629-9075 | www.pecg.ca

Surface Water Monitoring Strategy for the Cowichan Valley Regional District

Monitoring Strategy in support of the Drinking Water and Watershed Protection Function

Palmer Project# 1904902

> Prepared By Palmer

July 2, 2020

470 Granville Street, Suite 630, Vancouver, BC V6C 1V5 Tel: 604-629-9075 | www.pecg.ca

July 2, 2020

Kate Miller, Keith Lawrence Cowichan Valley Regional District 175 Ingram Street, Duncan, BC V9L 1N8

Dear Kate and Keith:

Re: Surface Water Monitoring Strategy for the Cowichan Valley Regional District Project #: 1904902

Palmer is pleased to submit this report that describes the proposed surface water monitoring strategy for the Cowichan Valley Regional District.

We look forward to addressing any questions or comments you have on the proposed draft strategy.

Thank you for the opportunity to work with you on this project.

Yours truly,

R.Palm.

Rick Palmer President & CEO

Table of Contents

1.	Introduction						
	1.1 1.2	Histor Objec	ical Surfac tives	e Water Monitoring			
2.	Moni	itoring) Approa	ch and Rationale	8		
	2.1	8					
		2.1.1	Rationale				
		2.1.2	Site Sele	tion	9		
			2.1.2.1	Value of Data Record			
			2.1.2.2	Scope of Watershed Integration			
			2.1.2.3	Magnitude of Risk			
			2.1.2.4	Numerical Assessment			
			2.1.2.5	Assessment Results			
		2.1.3	Sampling	Effort			
		2.1.4					
	2.2	Intens	ive Short-	Term Monitoring	17		
		2.2.1	Rationale				
		2.2.2	Site Sele	tion for Short-Term Monitoring			
		2.2.3	Sampling	Effort			
		2.2.4	Surface V	/ater Analytes			
	2.3	Summ	nary				
		2.3.1	Next Step	s			
3.	Certi	ficatio	on		21		
4.	Refe	rences	S				

List of Figures

Figure 1.1 CVRD boundary and watersheds	5
Figure 1.2 Surface water monitoring strategy, and adaptive management plan flow diagram	
(adapted from CCME, 2015, and MVLWB & GLWB, 2019)	7
Figure 2.1 CVRD draft long-term water quality monitoring sites	16

List of Tables

Table 1.1 Cowichan Valley Regional District Watersheds and total number of EMS sites within	
each watershed	6
Table 2.1 Value of Data Record	10
Table 2.2 Scope of Watershed Integration	11
Table 2.3 Magnitude of Risk	12

Table 2.4 Water Quality Risk Assessment for the Cowichan Valley Regional District based on	
Land Area (%)	12
Table 2.5 Scoring Matrix	14

List of Appendices

Appendix A

Table A.1 Surface Water Monitoring Sites Rationale

Table A.2 Cowichan Valley Regional District Long-Term Monitoring Site Selection: Scoring Assessment

Appendix B

Table B.1 Surface Water Monitoring Sites Periods of Record and Sample Numbers by Year

1. Introduction

The Cowichan Valley Regional District (CVRD) is approximately 3.5 x 10⁵ ha in surface area, with at least 20 watersheds wholly or partially contained within its boundaries (Figure 1.1; Table 1.1). The watersheds are of varying size, ranging from 1,100 ha for the Stocking Creek watershed to 93,000 ha for the Cowichan River watershed. The two largest watersheds wholly contained within the CVRD are the Cowichan River watershed and the Chemainus River watershed (Table 1.1). The three largest watersheds only partially contained within the CVRD include the Nanaimo River watershed, the Nitinat River watershed and the San Juan River watershed (Figure 1.1; Table 1.1). The relatively numerous smaller watersheds are located along the eastern shoreline of the CVRD, while the relatively fewer, larger watersheds are further inland and to the west (Figure 1.1).

Watershed pressures in the CVRD include activities associated with forestry, agriculture, and urban development due to a growing population. These pressures can result in stormwater runoff which mobilizes pollutants such as oil, fertilizers, septic waste, and animal waste. Although it is recognized that every watershed is unique and important, watershed pressures are relatively intense within the smaller watersheds in the eastern portions of the CVRD and less intense in the larger watersheds in the western portions of the CVRD and less intense in the larger watersheds in the western portions of the CVRD (SNC Lavalin 2019).

In 2018, the CVRD established the Drinking Water and Watershed Protection (DWWP) Function designed to facilitate watershed management planning, to protect, maintain and/or enhance water quality long-term, and to increase public awareness of water-related issues.

To achieve the goals of the DWWP, it was recognized that a regional, watershed-based, surface-water sampling and monitoring strategy was required. A properly designed and executed monitoring program must provide a thorough characterization of surface waters and an understanding of the effects of watershed pressures, such as population growth and associated urbanization, forestry, climate change, and industrial and agricultural development, on surface water quality.

1.1 Historical Surface Water Monitoring

Numerous surface water monitoring sites have been established within the CVRD over the past several decades, and the data collected from these sites have primarily been stored in the provincial Environmental Monitoring System (EMS) database. In late 2019, a search of the EMS database indicated that the surface water dataset for the 20 watersheds in the CVRD included at least 248 EMS monitoring sites (Table 1.1) and approximately 16,000 surface water samples with potentially over 100 surface water analytes reported for each sample. The period of record included over 50 years of data, starting in 1968 and continuing to the present day (Appendix B, Table B.1). A request to the CVRD and partnering agencies was made for all available surface water data for the region. The data that were made available were those from the EMS database and from a local stewardship organization.

Seasonal trends analysis and characterization of surface water using conductivity and hardness resulted in the delineation of two main hydrological seasons, including a summer dry season (May – September) and winter rainy season (November – April). For many analytes, concentrations increased during the dry season and then decreased during the rainy season.

Temporal trends analysis was undertaken for the watersheds and sites with a consistent long-term data record. The result was determination of 17 statistically significant trends from five watersheds. The Cowichan River watershed had the highest number of analytes with significant temporal trends, including increasing trends for alkalinity, ammonia, nitrate, total nitrogen, and total phosphorus.

Due to inconsistent sampling and laboratory analysis, and a consequent lack of an adequate data record, it was not possible to complete a spatial analysis comparing surface water quality to land use impacts in CVRD watersheds.

The assessment of water chemistry resulted in many guideline and objective exceedances over the period of record, including for conductivity, dissolved oxygen, pH, temperature and turbidity. Overall, the monitoring sites with the largest datasets had the greatest number of exceedances. Temperature and conductivity were the two analytes that had the largest number of exceedances.

Watershed Name	Approximate Watershed Area (ha)	EMS Sites (n)
Bonsall Creek	3,600	0
Bush Creek	2,800	0
Carmanah-Walbran	36,000	9
Chemainus River	36,000	10
Chemainus Benchlands	1,500	2
Cowichan River	93,000	77
Gordon River	31,000	5
Gulf Islands	5,000	0
Holland Creek	3,100	4
Koksilah River	31,000	24
Ladysmith - Saltair Benchlands	2,700	0
Malahat Benchlands	2,800	7
Nanaimo River	83,000	4
Nitinat River	81,000	20
San Juan River	67,000	4
Sansum Narrows – Cowichan Bay Benchlands	4,700	11
Satellite Channel Benchlands	4,300	4
Shawnigan Creek	9,900	64
Stocking Creek	1,100	3
Yellowpoint Benchlands	4,000	0
Totals	503,500*	248

Table 1.1 Cowichan Valley Regional District Watersheds and total number of EMS sites within each watershed

*The total watershed area is greater than the size of the CVRD (approximately 350,000 ha) because it includes the total watershed area for all those watersheds that are only partially within the CVRD boundaries (see

Figure 1.1).

1.2 Objectives

The purpose of this Regional Surface Water Monitoring Strategy is to support the CVRD DWWP goal to protect water quality at the source. The objectives of this Strategy are to:

- Identify surface water bodies where water quality problems are occurring and may be threatening aquatic ecosystem health, ecosystem services, and drinking water
- Enable the identification of water quality management actions

The Strategy contains five separate tasks (Figure 1.2) and was designed to provide the consistent, comprehensive and foundational surface water data required for spatial, seasonal and temporal trends

analysis, for surface water characterization and determination of normal range, and for development of water quality objectives and subsequent assessment of water quality.

Figure 1.2 Surface water monitoring strategy, and adaptive management plan flow diagram (adapted from CCME, 2015, and MVLWB & GLWB, 2019)

The collection and analysis of surface water data within the Regional Surface Water Monitoring Strategy were considered essential to support the science-based development of watershed-level Adaptive Management Plans (AMP), as required to support the DWWP (Figure 1.2). The overall goal of a watershed-based AMP is to provide a systematic watershed management response to the results of water quality assessment (e.g. MVLWB & GLWB 2019).

A watershed-level AMP (Figure 1.2) is initially supported by development of a Watershed Management Plan (e.g. SSG 2016, WRGI 2007) that through consultation sets out a vision and conservation priorities and management actions for a watershed. Based on the identified priorities in the Watershed Management Plan, a response framework is then developed. The primary activity in developing a response framework is the definition of Action Levels and management actions. For surface water the Action Levels are predetermined triggers which, if exceeded, require a watershed management response. Action Levels must include both a degree of severity (i.e. BC Water Quality Guidelines) and spatial extent and should be as specific as possible. Through reporting and follow-up the response framework is then implemented through comparison of the water chemistry data with the Action Levels. If an Action Level is exceeded, then pre-

determined watershed management actions are implemented (Figure 1.2). Among the management actions is a re-evaluation of the Surface Water Monitoring Strategy.

2. Monitoring Approach and Rationale

A two-component watershed monitoring program was developed for the CVRD based on an analysis of the available data for all CVRD watersheds and the long term objectives of the DWWP to assess the impacts of land use on water quality.

The first component included the development of a relatively limited group of permanent long-term monitoring sites in the CVRD. The first component was designed to provide a consistent, long-term data record suitable for spatial, seasonal, and/or temporal trends analysis. It was expected that the location and number of these sites would evolve through discussion with stakeholders.

The second component included the development of a short-term monitoring program designed to increase monitoring intensity at sites or watersheds identified as at risk (i.e. exceeding Action Level triggers), or as requiring development of watershed-specific water quality objectives. This component included the short-term intensive sampling of a relatively large number of sites concentrated in a relatively small area. This second component was also consistent with the monitoring strategy that has been developed and implemented by the BC Ministry of Environment and by the Nanaimo Regional District (Plewes, 2018): the Nanaimo Regional District ten year water quality and land use trend analysis was reviewed to assess if parallels could be inferred given the similar landscape and growth patterns and to where possible build synergies within the two programs.

2.1 Long-Term Monitoring

An essential tool for aquatic ecosystem management is trends analysis, which includes spatial trends analysis, seasonal trends analysis, and long-term temporal trends analysis.

2.1.1 Rationale

Spatial trends analysis requires sample collection at multiple locations within a watershed. In creeks and rivers spatial trends analysis provides understanding of alterations in water chemistry moving from highelevation headwaters to final lowland deltas at the mouth of creeks and rivers. In lakes spatial trends, such as depth profiles, can provide understanding of physical lake structure and ecosystem function (i.e. trophic status).

Seasonal trends analysis requires sample collection during each season of the year and provides an understanding of the interaction between yearly climate fluctuations and watershed processes that results in cyclical alterations in water chemistry.

Finally, long-term temporal trends analysis requires consistent yearly sampling over at least a ten-year period and is critical for two reasons. First, it is essential for robust calculation of normal range, which defines the limits of 'expected' values and provides benchmarks for definition of 'outliers' in the data. And second, temporal trends analysis provides understanding of the long-term implications of both anthropogenic development and climate change.

All the analyses described above provide the foundation on which to rest a competent, robust and confident assessment of water quality. The trends analyses are therefore of critical importance in development of a robust watershed management strategy, in identifying emerging watershed risks, in determination of meaningful water quality objectives, and in structuring a useful and effective adaptive management plan.

A fundamental guiding principle of robust trends analysis is consistency. This includes consistent sampling both seasonally and yearly for each site, and consistency in the number of samples, date of sampling, list of analytes, and analytical laboratory. Trends analysis also requires a consistent seasonal coverage and spatial coverage over time. These requirements include the establishment of permanent sample stations that are sampled on a consistent, regular, defined schedule over a long time period. And the longer the period of record and the more consistent the data collection, the more valuable the data set will become for trends analysis, definition of normal range, and watershed management.

It is also of critical importance to have a comprehensive and consistent training of volunteers and staff involved with water sampling and to develop a guidance and training manual for surface water sampling. As discussed for the recent monitoring effort undertaken in the Regional District of Nanaimo (Plews et al. 2018), the engagement and training of volunteers is an absolutely critically important component of a monitoring strategy. It takes time to develop and maintain relationships and so it is recommended that effort be expended in forming and maintaining relationships with community volunteers and that one part of that should be the open access and timely reporting of monitoring results.

2.1.2 Site Selection

The permanent long-term surface water monitoring sites that were identified for the Regional Surface Water Monitoring Strategy included 37 established EMS sites and 2 new sites located in a total of 13 of the 20 identified CVRD watersheds (Figure 2.1, Appendix A, Table A.1).

This list, however, was considered an initial identification of monitoring sites in recognition of the absolute necessity for a collaborative approach in development of a final monitoring strategy given limited resourcing. It was considered that only through collaboration with multiple stakeholders and First Nations could a defensible and supportable long-term monitoring strategy be developed.

The first step in the site selection process included identifying a list of all possible sites to evaluate for sampling. The list of all possible sites comprised all those noted in the EMS database within the CVRD boundary as well as additional sites in watersheds or waterbodies that had no previous surface water sampling. The second step in the process was a semi-quantitative assessment based on the following six variables: 'period of record', 'number of sites in a watershed', 'size of watershed', 'location of site within the watershed', 'environmental sensitivity' based on presence of salmon and/or potable water intakes, and 'assessed risk' (SNC Lavalin 2019). The six variables were organized into the following three categories;

- Value of Data Record included the variables 'period of record' and 'number of sites in a watershed'
- Scope of Integration included the variables 'size of watershed' and 'location of site within the watershed'
- Magnitude of Risk included the variables 'environmental sensitivity' and 'assessed risk'

Each of the six variables contained three levels of classification based on a quantitative delineation. The levels were defined by examination of the data for each variable: the objective was to encompass the entire range of data for each variable so that each level would be represented by actual conditions for at least one site within the pool of potential sites.

Each site was given a rank for each of the three categories: the rank was based on the classification of the two variables within each category. For each of the three categories, a site was ranked as 'low, 'medium', 'high', or 'high+'. These three category ranks were then integrated using a scoring matrix that provided a final numerical assessment of monitoring priority for each site.

The assessment process is discussed further in the following subsections.

2.1.2.1 Value of Data Record

In consideration of the guiding principle of consistency, and to maximize the period of record and size of the existing database, the long-term monitoring sites recommended for the Regional Surface Water Monitoring Strategy gave preference to the current set of identified sample locations in the EMS with the longest and most recent period of record and the most extensive set of water chemistry data (Table 2.1, Appendix B).

It was considered that the value of a site for the long-term monitoring program depended on its location, the length of the period of record and the number of sites within the watershed available for selection. Established sites with a recent (last record within 5 years of present day), long-term (>10yr) continuous data record were considered the most valuable for trends analysis and definition of normal range (Table 2.1).

Table 2.1 Value of Data Record

*Lakes and streams were assessed separately in each watershed. If there were multiple sites in a watershed, the site with the best data record was ranked the highest.

2.1.2.2 Scope of Watershed Integration

Preference was given to downstream locations in creeks, rivers and lakes in larger watersheds because they integrated all upstream watershed inputs. The scope was therefore considered as an indication of the area that was integrated within a sample site. The greater the watershed area and the further downstream a monitoring site was located, the larger the area integrated into the monitoring data from that site and the more comprehensive the understanding of watershed processes it provided (Table 2.2)

Within the CVRD, there are four large watersheds greater than 40,000 ha and five intermediate watersheds greater than 5,000 ha. Monitoring data from these watersheds integrate data from the largest areas within the CVRD. The majority of the watersheds are relatively smaller: monitoring of these watersheds provides surface water data integrated over only a fraction of the area within the CVRD.

Another important consideration was that the further downstream a site was located, the greater the reliability of flow, which was considered important for maintaining a consistent data record in a District prone to drought.

Table 2.2 Scope of Watershed Integration

2.1.2.3 Magnitude of Risk

It was considered that the magnitude of risk to a watershed increased as the environmental sensitivity (i.e. presence of sensitive species or water uses) and percentage assessed risk (SNC Lavalin, 2019) increased (Table 2.3).

The highest risk areas were those of critical importance to the sustainable supply of potable drinking water and sites within these waterbodies were ranked the highest. Sites with anadromous salmon species were also ranked relatively high.

Table 2.3 Magnitude of Risk

Source of Assessed Risk: SNC Lavalin (2019) - see Table 2.4

Preference was also given to the eastern watersheds/locations because of the relatively greater watershed pressures identified in these areas (SNC Lavalin 2019: Appendix II). To quantify watershed pressures the recently completed risk assessment (SNC Lavalin 2019) was summarized for water quality to rank watersheds with respect to the percentage of land area considered at high or extreme risk of major or catastrophic consequences (Table 2.4). The summary of risk was based on consequence and hazard attributes. Consequence attributes included whether a stream was a drinking water source and the stream order. Hazard attributes included the land use type adjacent to a stream and the riparian forest cover. (SNC Lavalin 2019). This analysis indicated that greater than 80% of the area of several small eastern watersheds were at high or extreme risk, including Sansum Narrows - Cowichan Bay Benchlands, Satellite Channel Benchlands, and Yellowpoint Benchlands (Table 2.4).

		SUM (%)				
Watershed	1000	2000	4000	7000	10000	High &
	Very Low	Low	Moderate	High	Extreme	Extreme
Sansum Narrows - Cowichan Bay Benchlands	1.5	0.0	3.7	57.8	36.9	95
Satellite Channel Benchlands	1.7	0.0	4.6	31.2	62.5	94
Yellowpoint Benchlands	1.2	0.0	14.3	58.8	25.7	84
Malahat Benchlands	10.2	0.5	31.6	57.3	0.4	58
Bonsall Creek	6.6	0.9	38.8	44.3	9.3	54
Chemainus Benchlands	16.7	18.4	12.8	29.9	22.3	52
Stocking Creek	4.1	0.0	51.4	41.0	3.5	44

Table 2.4 Water Quality Risk Assessment for the Cowichan Valley Regional District based on Land Area (%)

Koksilah Biyer	40.4	0.8	16.6	35.2	7 1	42
Chauminan Creak	10.1	2.0	14.0	24.5	0.7	12
Snawnigan Creek	42.1	2.9	14.8	31.5	8.7	40
Chemainus River	36.3	0.4	24.7	36.7	1.9	39
Cowichan River	44.6	1.7	15.1	34.6	3.9	39
Bush Creek	0.7	0.0	61.2	38.1	0.0	38
Holland Creek	37.5	2.0	22.6	37.7	0.2	38
Ladysmith-Saltair Benchlands	67.0	15.3	13.4	4.3	0.0	4.3
Carmanah-Walbran						
Gordon River						
Gulf Islands						
Nanaimo River						
Nitinat River						
San Juan River						

Source: SNC Lavalin (2019) Appendix II

2.1.2.4 Numerical Assessment

Each of the 39 sites was assigned a rank of low, medium, high, or high+ for each of the three categories as defined by Table 2.1 (Value of Data Record), Table 2.2 (Scope of Watershed Integration), and Table 2.3 (Magnitude of Risk). These three category ranks were then integrated using a scoring matrix that provided a final numerical assessment of monitoring priority for each site (Table 2.5). Site scores within the scoring matrix ranged from 1 to 64, with the highest score based on a rank of 'high+' for each of the three categories.

The importance and priority of sites for inclusion in the monitoring program were based on the integrated score. Sites were assessed as low priority for monitoring with integrated scores of 1 to 6, medium priority with scores of 8 to 12, high priority with scores of 16 to 27, and high+ priority with scores >27 (Table 2.5).

Table 2.5 Scoring Matrix

		Value of Data Record (Table 2.1)							-								
Low			w	Medium			High			High⁺							
e of Risk 2.3)	High+	4	8	12	16	8	16	24	32	12	24	36	48	16	32	48	64
	High	3	6	9	12	6	12	18	24	9	18	27	36	12	24	36	48
Magnitud (Table	Medium	2	4	6	8	4	8	12	16	6	12	18	24	8	16	24	32
_	Low	1	2	3	4	2	4	6	8	3	6	9	12	4	8	12	16
		Low	Medium	High	High+	Low	Medium	High	High+	Low	Medium	High	High+	Low	Medium	High	High+
Scope of Watershed Integration (Table 2.2)																	
Monitoring	g Priority	:			•												
1 to 6	Low		8 to	12	Mediur	n	16 t	o 27	High		>	30	High+				

2.1.2.5 Assessment Results

Of the 39 sites in 13 watersheds that were included in the monitoring strategy, a total of 21 sites were assessed as of high or high+ priority for monitoring and a further 14 were assessed as of medium priority (Appendix A,Table A.1 and Table A.2). The remaining four sites were assessed as of low priority: they were included as components of a spatial monitoring network designed to assess alterations in water chemistry upstream to downstream in four of the important rivers within the CVRD. Because assessment of spatial trends in rivers was considered a special case for monitoring, this variable was not included in the scoring matrix for site selection, but rather was included as a key addition to the monitoring program. Spatial trends in lakes will also be examined, but for lakes the spatial trend is related to depth profiles rather than distance from headwaters.

Seven watersheds were not included in the long-term monitoring program (i.e. no long-term water monitoring sites in these watersheds): Ladysmith-Saltair Benchlands, Carmanah-Walbran, Gordon River, Gulf Islands, Nanaimo River, San Juan River, and Bush Creek. These watersheds were excluded because they were assessed as low risk relative to the included watersheds even though not explicitly considered in the recently completed risk analysis (SNC Lavalin 2019), and were assessed as of low monitoring priority during the assessment process. In addition, some of the watersheds are only partially inside CVRD boundaries (e.g. San Juan River, Gordon River, Nanaimo River). However, if subsequent information and assessment indicates that any of these watersheds require monitoring, sites can be selected in collaboration with the relevant stakeholders.

2.1.3 Sampling Effort

For the long-term permanent monitoring locations, three samples per year on an ongoing yearly basis are recommended: one sample during the spring wet period (March/April), one sample during summer low-flow (July/August), and one sample during the fall rainy season (November/December). For the lake sites, depth profiles located at the deepest part of the lake are recommended.

Streams and rivers are responsive to transient events such as intense spring rainfall. To capture the alteration of surface water chemistry in response to these events, it is recommended that continuous monitoring systems be installed and maintained at a number of river sites. It is recommended that sites with active hydrometric stations be used for continuous monitoring.

2.1.4 Surface Water Analytes

The long-term analysis of surface water consists of two sets of analyses. The first set includes determination of *in situ* analytes measured using a multi-probe and Secchi disc, including the following:

- Temperature, dissolved oxygen (DO), pH, turbidity, conductivity
- Secchi depth in lakes

These five analytes describe fundamental characteristics of a water body and are particularly useful because with a minimal amount of training, they can be competently measured by volunteers and community groups. These analytes do, however, require purchase and ongoing maintenance and calibration of multi-parameter probes.

The second set of analyses requires collection of surface water samples and laboratory analysis for the following;

- E. coli, fecal coliforms, and total coliforms, which are a measure of fecal contamination from animal and human waste
- Biological Oxygen Demand (BOD), which is a measure of the organic loading from wastewater
- Total Nitrogen (TN) and Total Phosphorus (TP), which is a measure of trophic status
- Complete scan of dissolved and total metals (cations), which are useful for surface water characterization and which provide an understanding of the effects of particulate loading and mine drainage on water quality
- Major anions, including alkalinity, chloride, and sulphate, which are useful for surface water characterization

It is expected that a given long-term sampling program may not require all these analytes, depending on the specific watershed concerns.

2.2 Intensive Short-Term Monitoring

The short-term program was designed to increase monitoring intensity at sites or watersheds identified as at risk and requiring further development and/or implementation of an adaptive watershed management plan, under development pressure and requiring a multivariate understanding of the relationship between development and water quality, and/or as requiring development of watershed-specific water quality objectives.

2.2.1 Rationale

Identification and assessment of emerging water quality issues, particularly related to development, requires multiple upstream/downstream sample sites consistent with requirements for effects assessment, multivariate analyses, watershed management, and/or for an understanding of the magnitude and extent of observed effects. These data are of critical importance in the adaptive management of affected watersheds.

Developing site-specific water quality objectives requires intensive and comprehensive monthly sampling and provincially mandated five in thirty sampling, that is, collection of five samples in thirty days during periods of maximum hydrological fluctuation (e.g. BCMOE 2016, Cavanagh *et al.* 1998). This is not necessary in all watersheds or subbasins where a relevant set of objectives have already been established or can be used as defensible proxies.

2.2.2 Site Selection for Short-Term Monitoring

The short-term strategy requires initial identification of a watershed or sub-watershed requiring intensive sampling due to a particular threat. Once the watershed or subbasin is selected, then sites are located based on the specific configuration of watershed pressures and any other watershed-specific concerns. It is expected that in most cases, approximately 10 to 12 sites would be adequate for intensive short-term monitoring.

It is recommended, however, that many more than 10 to 12 sites be sampled to conduct a multivariate analysis. As a comparison, the Regional District of Nanaimo (Plewes et al. 2018) developed a multivariate analysis using a much larger number of sites. It is recommended that 70 to 80 sites be sampled to develop a robust and spatial understanding of the effect of watershed pressures on surface water chemistry within the CVRD.

2.2.3 Sampling Effort

The total number of samples will depend on the final selection of sample sites for the short-term monitoring program (see Section 2.2.2 above). For each of the selected sample sites for short-term sampling, monthly sampling with additional sampling effort to include 5 samples in 30 days for comparison with BC Water Quality Guidelines could be required. It is expected that this intensity of sampling would be required for a three-year period per short-term monitoring program.

For collection of surface water data for multivariate analysis it is recommended that sampling effort be consistent with the level of efforts used in the Regional District of Nanaimo (Plewes et a. 2018).

2.2.4 Surface Water Analytes

The analysis of surface water for short-term monitoring consists of three sets of analyses. The first set includes determination of *in situ* analytes measured using a multi-probe and Secchi disc, including the following:

- Temperature, dissolved oxygen (DO), pH, turbidity, conductivity
- Secchi depth in lakes

These five analytes describe fundamental characteristics of a water body and are particularly useful because with a minimal amount of training, they can be competently measured by volunteers and community groups. These analytes do, however, require purchase and ongoing maintenance and calibration of multi-parameter probes.

The set also includes determination of several fundamental analytes through collection of surface water samples and laboratory analysis, including:

- E. coli, fecal coliforms, and total coliforms, which are a measure of fecal contamination from animal and human waste
- Biological Oxygen Demand (BOD), which is a measure of the organic loading from wastewater
- Total Nitrogen (TN) and Total Phosphorus (TP), which is a measure of trophic status
- A complete scan of dissolved and total metals (cations), which are useful for surface water characterization and which provide an understanding of the effects of particulate loading on water quality
- Major anions, including alkalinity, chloride, and sulphate, which are useful for surface water characterization

It is expected that a given intensive, short-term sampling program may not require all these analytes, depending on the specific watershed concerns.

The third set includes all those analytes identified as of potential concern within the specific watershed under study (e.g. Sites with recent mining activity would require assessment of sulfate, metals and pH).

2.3 Summary

Long-term monitoring of watersheds is important for the development of robust seasonal, spatial and temporal trends analysis relating to ecosystem change and for delineation of normal range. Short-term intensive monitoring is important for assessment of aquatic impacts related to watershed pressures and for development of robust water-quality objectives. By establishing both a long-term monitoring strategy and a relatively intensive short-term strategy, the CVRD can both proactively identify watershed trends, develop water quality objectives, and react quickly and effectively in response to emerging issues within the CVRD.

2.3.1 Next Steps

This document provides monitoring objectives and an outline of the monitoring program design (Figure 1.2) for the surface water monitoring strategy within the CVRD. Recommendations for next steps include the following;

- Consultation with stakeholders to confirm site selection for long-term monitoring, including
 determination of site access. Stakeholders should also have the opportunity to evaluate additional
 candidate sites using the assessment protocol. However, once the monitoring strategy has been
 implemented, it is important that additions and deletions of sites be minimized to the extent
 possible.
- Identification of community volunteer organizations.
- Training of volunteers (where used) in water sampling protocols.

- Implementation of the monitoring program for surface water sample collection.
- Collaboration with the Province to continue development of EMS for data management. It is recognized that community groups may wish to access data from their area of interest.
- Development of CVRD database structures and management strategies to collect and warehouse data: not all data that are collected will be added to provincial EMS system.

3. Certification

This report was prepared, reviewed and approved by the undersigned:

Prepared By:

Dave Huebert, Ph.D., R.P.Bio., P.Biol. Senior Environmental Scientist

Adrienne Ducharme, BBA, BSc. M.Sc. Environmental Biologist

Reviewed By:

Irene Tuite, M.Sc., R.P. Bio. Senior Aquatic Ecologist

Rick Palmer, M.Sc., R.P. Bio. President and CEO

4. References

- BCMOE (British Columbia Ministry of Environment). 2016. Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators. June 2016. 201pp.
- Cavanagh, N., R.N. Nordin, L.W. Pommen, and L.G. Swain. 1998. Guidelines for Designing and Implementing a Water Quality Monitoring Program in British Columbia. 56 pp.
- CCME (Canadian Council of Ministers of the Environment). 2015. Guidance Manual for Optimizing Water Quality Monitoring Program Design. 78 pp.
- MVLWB (Mackenzie Valley Land and Water Board) and GLWB (Gwich'in Land and Water Board). 2019. Guidelines for Aquatic Effects Monitoring Programs. March 2019. 38pp.
- Plewes, R., H. Larratt, and J. Schleppe. 2018. Surface Water Quality Trend Analysis for Regional District Nanaimo Community Watershed Monitoring Network Data (2011-2017). Report prepared for Regional District of Nanaimo. Report prepared by: Ecoscape Environmental Consultants Ltd. 63 pgs + Appendices.
- SNC Lavalin. 2019. CVRD Watershed Analysis Final Risk Analysis Report. Prepared for Cowichan Valley Regional District. 100pp.
- SSG (Sustainability Solutions Group). 2016. Bonsall Creek Watershed Management Plan. June 8, 2016. Prepared for the Municipality of North Cowichan. 46pp.
- WRGI (Westland Resources Group Inc.). 2007. Cowichan Basin Water Management Plan. March, 2007. 79pp.

Appendix A

Appendix A

 Table A.1 Surface Water Monitoring Sites Rationale

Watershed	EMS ID	Location	Latitude	Longitude	Site Rationale
Bonsall Creek	NEW	Bonsall Creek East of Crofton Rd.	48.8786	123.6744	Projected population growth and the significant presence of increasing stress on surface water quality. The watershed has order streams leading to greater susceptibility due to lower of 54% of the watershed has been assessed as within a high of category (SNC Lavalin 2019). There are no established more watershed so the identified site will be new. The site is down integrate all upstream watershed processes.
Chemainus Benchlands	1100871	Fuller's Lake	48.9078	123.7203	This is a lake monitoring site with a moderate dataset. There of urban and industrial development in this watershed. Fuller source therefore it is important to have a long-term data record Projected population growth will place increasing stress on swatershed has a large number of lower order streams leading due to lower dilution capacity. A total of 52% of the watershed within a high or extreme risk rating category (SNC Lavalin 20)
Chemainus River	120780	Chemainus River at Highway #1	48.8775	123.7028	A total of 39% of the watershed has been assessed as within rating category (SNC Lavalin 2019). This site is downstream Highway #1 and has the greatest surface water quality risk in watershed has a large number of lower order streams leadin due to lower dilution capacity. This site is the most downstre Approximately 80 samples have been analyzed over the per
Chemainus River	E283570	Chemainus River at Grace Road	48.903942	123.757161	A mid-reach site on the Chemainus River suitable for spatial This site is south of the town of Chemainus with industrial pr
Chemainus River	E283509	Chemainus River at Park	48.837692	123.826661	An upstream site on the Chemainus River suitable for spatia This site has 32 samples analysed since 2000 (most in 2011
Cowichan River	E243577	Somenos Lake; Centre	48.8008	123.7031	This is a lake monitoring site with a moderate dataset. Water urban proximity, agriculture, and drainage issues. Cowichan domestic drinking water licenses along the reach of the river is highest in the developed areas of this watershed, including and the city of Duncan. The Cowichan River watershed is th so has multiple sites for coverage. A total of 39% of the water as within a high or extreme risk rating category (SNC Lavalir

Palmer.

agriculture will place as a large number of lower dilution capacity. A total of or extreme risk rating nitoring sites in this nstream in the watershed to

e is a considerable amount r's Lake is a drinking water ord at this particular site. surface water quality. The ng to greater susceptibility ed has been assessed as 019).

n a high or extreme risk n of agricultural areas and n the watershed. The ng to greater susceptibility eam site in the watershed. riod of record.

l analysis of water quality. ressures in the region.

al analysis of water quality. 1).

ershed pressures include n River supports numerous r. Surface water quality risk ng around Lake Cowichan ne largest in the CVRD and ershed has been assessed in 2019).

Watershed	EMS ID	Location	Latitude	Longitude	Site Rationale
Cowichan_River	E207466	Quamichan Lake; Centre	48.8003	123.6625	Prov. Lake monitoring site - extensive dataset. Quamichan La blue-green algae blooms due to high content of phosphorus of agricultural activity around the lake. Due to the effect these b quality, continued long-term monitoring of this lake is importa at this monitoring site where data is available in the EMS is a monitoring program will ensure changes over time are monitor accurately.
Cowichan_River	E217507	Cowichan Lake Station #1	48.8258	124.1706	This is an established provincial lake monitoring site with an Cowichan River watershed pressures include forestry operation increased urbanization and agriculture. There are numerous Cowichan Lake and the lake is a significant area for recreation objectives have been set specifically for this lake and prelimin guideline and objective exceedances at several long-term lake
Cowichan_River	E217508	Cowichan Lake Station #2	48.8564	124.1572	This is an established provincial lake monitoring site with an Cowichan River watershed pressures include forestry operation increased urbanization and agriculture. There are numerous Cowichan Lake and the lake is a significant area for recreation objectives have been set specifically for this lake and preliming guideline and objective exceedances at several long-term lake
Cowichan_River	E217509	Cowichan Lake Station #3	48.8817	124.2811	This is an established provincial lake monitoring site with an Cowichan River watershed pressures include forestry operation increased urbanization and agriculture. There are numerous Cowichan Lake and the lake is a significant area for recreation objectives have been set specifically for this lake and prelimin guideline and objective exceedances at several long-term lake
Cowichan_River	E206106	Cowichan River Below Somenos Creek	48.7726	123.6633	This is an established federal/provincial monitoring site with a one of the longest on record in the CVRD. This site is one of in the watershed and integrates the effect of watershed press watershed.
Cowichan River	120802	Cowichan River at Highway #1	48.7719	123.6964	Second of two downstream monitoring sites important for uno
Cowichan River	E234124	Cowichan River at Vimy Beach	48.7622	123.77	A mid-reach site on the Cowichan River important for spatial
Cowichan River	E206107	Cowichan River 400m Below PE- 247	48.8258	124.0219	A second 'mid-reach' monitoring site downstream from PE-24 treatment plant. The site is important for long-term monitoring quality doesn't exceed provincial guidelines or regional water

ake has been subject to due to runoff from blooms can have on water ant. Most samples analyzed after 2010. A long-term cored and recorded

extensive dataset. The tions, land development, drinking water licenses on onal activities. Water quality inary data analyses indicate ke monitoring sites.

extensive dataset. The tions, land development, drinking water licenses on onal activities. Water quality inary data analyses indicate ke monitoring sites.

extensive dataset. The tions, land development, drinking water licenses on onal activities. Water quality inary data analyses indicate ke monitoring sites.

an extensive dataset that is the most downstream sites sures for the entire

derstanding spatial trends.

analysis of water quality.

47 which is a sewage g to ensure surface water r quality objectives.

Watershed	EMS ID	Location	Latitude	Longitude	Site Rationale
Cowichan River	E206108	Cowichan River at Cowichan Lake Weir	48.8243	124.0589	An upper-reach site for spatial analysis of water quality.
Holland Creek	E217163	Holland Lake; Outflow	48.9486	123.8708	A lake monitoring site with a moderate dataset. Watershed p development and water-based recreation. The lake is an ider for Town of Ladysmith. A total of 38% of the watershed has b high or extreme risk rating category (SNC Lavalin 2019).
Holland Creek	NEW	Holland Creek; Mainstem at Dogwood Drive crossing	48.9808	123.809	Holland Creek watershed pressures include urban developm risk is highest around Highway #1 (SNC Lavalin 2019). Holla potentially subject to saltwater influence and therefore the pr approximately 250 m upstream from the highway, at the Dog exact location of the site will be determined on the ground wi
Koksilah River	123981	Koksilah River at Highway #1	48.7567	123.6742	This site has extensive dataset. Surface water quality risk is area near the highway and the ocean due to pressures from urban and commercial development. Koksilah River has a nu such as commercial and sport fishing, industrial, domestic ar additional recreational activities. There are no authorized dis River but due to summer low flows, the extent of developmen surface water quality. The watershed has pressures from non agriculture (dairy farms) and onsite sewage disposal system operations. A total of 42% of the watershed has been assess extreme risk rating category (SNC Lavalin 2019).
Koksilah River	E207433	Koksilah River D/S of Kelvin Creek	48.7489	123.6875	This monitoring site has a moderate dataset over the period extensive non-point sources of potential contaminants, a spa within the Koksilah River is useful.
Koksilah River	E207427	Kelvin Creek at Koksilah Road	48.7453	123.6956	This monitoring site has a moderate dataset over the period
Koksilah River	E207426	Patrolas Creek at Hillbank Road	48.7222	123.66	Koksilah River 'mid-reach' for spatial analysis of water quality minimal.
Koksilah River	E207425	Koksilah River at Port Renfrew Road	48.6425	123.7383	Koksilah River 'upper-reach' for spatial analysis of water qua dataset exists at this monitoring site (1988-2012).
Malahat Benchlands	1100161	Spectacle Lake; South End	48.578	123.5698	Relatively rapid population growth is expected in this watersh additional pressures on surface water quality. Most of the wa streams which are susceptible to water quality issues due to An extensive dataset exists for this monitoring site but the da and 1980s). Spectacle Lake is a local source for recreational water-based recreation.

pressures include urban entified drinking water source been assessed as within a

nent and logging. Watershed and Creek at Highway #1 is roposed site location is gwood Drive crossing. The /hen the site is established.

highest in the developed a population increases, and umber of key water uses nd irrigation uses as well as scharges on the Koksilah ent could have an impact on on-point sources such as and upstream forestry sed as within a high or

of record. Because of the atial water quality analysis

of record.

/. Historic dataset is

ality. A moderately robust

thed leading to increased atershed has low order b limited dilution capacities. ata are not current (1970s al fishing and other forms of

Watershed	EMS ID	Location	Latitude	Longitude	Site Rationale
Malahat Benchlands	E294428	Malahat Creek at Mill Bay Rd.	48.615599	123.52068	Malahat Creek downstream has only recent data (2013-2018 development, sewage systems, agriculture and logging activity potential contaminants. A total of 58% of the watershed has h high or extreme risk rating category (SNC Lavalin 2019).
Malahat Benchlands	E295317	Unnamed Creek near Keir Road (CVRD SW018)	48.647033	123.551819	A new CVRD monitoring site located in a residential area in t samples have been collected to date but it is an important for determine downstream effects of increased urbanization in th
Nitinat River	E226221	Nitinat River D/S of Hatchery	48.8457	124.6501	Potential long-term CVRD pristine monitoring site. Downstread information from watershed before the Nitinat River flows into site is downstream of the Nitinat River Hatchery. This long-te used a benchmark for potential long-term impacts due to clim undisturbed watershed. This watershed was not evaluated in Lavalin 2019).
Sansum Narrows	E291153	Waldy Creek at Foreshore	48.737367	123.600706	Sansum Narrows is a watershed experiencing population groups of the streams, watershed pressures result in increased result in the water quality issues in the watershed. The monitoring site is a ocean. A total of 95% of the watershed has been assessed a risk rating category (SNC Lavalin 2019).
Satellite Channel Benchlands	E294422	Unnamed Creek @Kilmalu Road; CVRD sampling site	48.664503	123.556137	Numerous low order streams combined with increased imper the majority of the watershed have the potential to create add quality. Watershed pressures include urban development and downstream site is a recently established CVRD monitoring s 94% of the watershed has been assessed as within a high or category (SNC Lavalin 2019).
Satellite Channel Benchlands	E291150	Garnett Creek at Cherry Point Beach	48.709919	123.557003	A second monitoring site designed to extend coverage in the
Shawnigan Creek	127217	Shawnigan Creek at Highway #1	48.6558	123.5583	The furthest downstream long-term monitoring site on Shawr sewage treatment discharge location (PE 451) and before the ocean. The Shawnigan Creek watershed in the Mill Bay area pressures for rapidly expanding population densities, increas increased overall development. A total of 40% of the watersh within a high or extreme risk rating category (SNC Lavalin 20 assessment does not include the risk associated with the cor site.
Shawnigan Creek	1199901	Shawnigan Lake; #1	48.63835	123.639889	This is a provincial lake monitoring site with an extensive data pressures are greatest surrounding Shawnigan Lake and in s with little forest cover. Projected population increases in the w increased pressures on water quality from urban, commercia development. Shawnigan Lake is a destination for water-base

8). Urban runoff, land /ities are main sources of been assessed as within a

the Mill Bay area. Very few r long-term monitoring to he watershed.

eam site to maximize to Nitinat Lake. Monitoring erm monitoring site could be mate change in a relatively n the risk assessment (SNC

owth. Combined with many risk of potential surface downstream close to the as within a high or extreme

rvious surfaces throughout ditional pressures on water ad agricultural activity. This site (2013-2018). A total of or extreme risk rating

watershed.

vnigan Creek near the ne creek flows into the a has seen increased sed agriculture runoff and shed has been assessed as 019), although this ontaminated waste disposal

taset. Surface water quality streams in the watershed watershed will add al and industrial sed recreational activities

Watershed	EMS ID	Location	Latitude	Longitude	Site Rationale
					and is also a municipal and private drinking water source for communities.
Shawnigan Creek	1199902	Shawnigan Lake; #2	48.6103	123.6381	This is a provincial lake monitoring site with an extensive dat reach of Shawnigan Lake.
Shawnigan Creek	1199903	Shawnigan Lake; West Arm	48.653126	123.664378	This is a provincial lake monitoring site with an extensive dat arm of Shawnigan Lake.
Shawnigan Creek	1199904	Shawnigan Lake; East Arm	48.654052	123.631048	This is a provincial lake monitoring site with an extensive dat of Shawnigan Lake.
Shawnigan Creek	E294421	Shawnigan Creek at Shawnigan-Mill Bay Rd. (CVRD Site2)	48.655136	123.563591	A relatively new CVRD monitoring site (2013 and 2018) locat unnamed green space in the middle of residential neighbourd Shawnigan Lake, increased development in this area has inc quality in this area. Establishing this long-term monitoring site other urban monitoring sites will provide a spatial analysis of Shawnigan Creek downstream of Shawnigan Lake. This site permitted sewage discharge location PE12302.
Shawnigan Creek	E236520	Shawnigan Creek U/S of PE12302	48.660712	123.572234	This long-term monitoring site is downstream of Shawnigan I PE12302. In conjunction with the other urban monitoring site site will provide a spatial analysis of water quality along Shaw of Shawnigan Lake. The site has been monitored occasional
Shawnigan Creek	E294425	Shawnigan Creek D/S of South Island Aggregates	48.55698	123.60517	Shawnigan Creek tributary site in close proximity to previous pressures related to the presence of a contaminated soils was particular site does not have a robust dataset.
Stocking Creek	E206290	Stocking Lake; Centre	48.96	123.8258	A lake monitoring site with a moderate dataset. The Town of license for drinking water withdrawals from Stocking Lake. W major activity on the lake. Urban development has occurred i 44% of the watershed has been assessed as within a high or category (SNC Lavalin 2019).
Yellowpoint Benchlands	NEW	Unnamed Creek U/S of Brenton Page Rd.	49.027535	123.858491	This new site is the most downstream location at the conflue streams just prior to ocean discharge. Risk to surface water of residential, commercial and agricultural areas in the watersho Pressures are expected to continue due to increased popula increased risk near the north end of Ladysmith Harbour. A to has been assessed as within a high or extreme risk rating ca

the surrounding

taset located in the lower

taset located in the west

taset located in the east arm

ated downstream of an rhoods. Similar to creased pressures on water te in conjunction with the f water quality along e is also downstream of

Lake and upstream of es on Shawnigan Creek, this wnigan Creek downstream ally since 2000.

sly identified water quality aste disposal facility. This

f Ladysmith holds a water Vater-based recreation is a in the watershed. A total of or extreme risk rating

ence of several low order quality is highest near ned near highway #1. ation projections with an otal of 84% of the watershed ategory (SNC Lavalin 2019).

Watershed Type**	T: ***	EMS ID	Table 1: Valu	e of Data Record		Table 2: Scope of Watershed Integration			Table 3: Mag	Table 4		
watersned	туре		Period of Record	# Sites	Value	Size Watershed	% Watershed	Scope	Sensitivity	Risk	Magnitude	Score
Bonsall Creek	Mainstem		Intermittent, Historical, <5yr	First	Medium	<5000 ha	>75%	High	Potable Water	25% to 75%	High	24
Chemainus Benchlands	Lake	1100871	Sporadic, Historical, <10 yr	First	High	<5000 ha	>75%	High	None	25% to 75%	Low	9
Chemainus River	Mainstem	120780	Sporadic, Historical, <10 yr	First	High	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	36
Chemainus River	Mainstem	E283570	Sporadic, Historical, <10 yr	Second	Medium	<40,000 ha	>75%	High+	None	25% to 75%	Low	8
Chemainus River	Mainstem	E283509	Sporadic, Historical, <10 yr	≥Third	Low	<40,000 ha	25% to 75%	Medium	None	25% to 75%	Low	2
Cowichan River	Lake	E243577	Continuous, Recent, >10 yr	First	High+	>40,000 ha	<25%	Medium	Salmon	25% to 75%	Medium	16
Cowichan River	Lake	E207466	Continuous, Recent, >10 yr	First	High+	>40,000 ha	<25%	Medium	Salmon	25% to 75%	Medium	16
Cowichan River	Lake	E217507	Continuous, Recent, >10 yr	≥Third	High	>40,000 ha	>75%	High+	Potable Water	25% to 75%	High	36
Cowichan River	Lake	E217508	Continuous, Recent, >10 yr	Second	High+	>40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Cowichan River	Lake	E217509	Continuous, Recent, >10 yr	First	High+	>40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Cowichan River	Mainstem	E206106	Continuous, Recent, >10 yr	First	High+	>40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Cowichan River	Mainstem	120802	Continuous, Recent, >10 yr	Second	High+	>40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Cowichan River	Mainstem	E234124	Sporadic, Historical, <10 yr	≥Third	Low	>40,000 ha	25% to 75%	High	Potable Water	25% to 75%	High	9
Cowichan River	Mainstem	E206107	Sporadic, Historical, <10 yr	≥Third	Low	>40,000 ha	25% to 75%	High	Potable Water	25% to 75%	High	9
Cowichan River	Mainstem	E206108	Sporadic, Historical, <10 yr	≥Third	Low	>40,000 ha	25% to 75%	High	Potable Water	25% to 75%	High	9
Holland Creek	Lake	E217163	Intermittent, Historical, <5yr	First	Medium	<5000 ha	>75%	High	Potable Water	25% to 75%	High	18
Holland Creek	Mainstem	NEW	Intermittent, Historical, <5yr	First	Medium	<5000 ha	>75%	High	Potable Water	25% to 75%	High	18
Koksilah River	Mainstem	123981	Continuous, Recent, >10 yr	First	High+	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Koksilah River	Mainstem	E207433	Sporadic, Historical, <10 yr	Second	Medium	<40,000 ha	>75%	High+	Salmon	25% to 75%	Medium	16

Table A.2 Cowichan Valley Regional District Long-Term Monitoring Site Selection: Scoring Assessment

Koksilah River	Mainstem	E207427	Sporadic, Historical, <10 yr	≥Third	Low	<40,000 ha	>75%	High+	Salmon	25% to 75%	Medium	8
Koksilah River	Tributary	E207426	Intermittent, Historical, <5yr	≥Third	Low	<40,000 ha	25% to 75%	Medium	Salmon	25% to 75%	Medium	4
Koksilah River	Mainstem	E207425	Sporadic, Historical, <10 yr	Second	Medium	<40,000 ha	25% to 75%	Medium	Salmon	25% to 75%	Medium	8
Malahat Benchlands	Lake	1100161	Sporadic, Historical, <10 yr	First	High	<5000 ha	>75%	High	None	25% to 75%	Low	9
Malahat Benchlands	Mainstem	E294428	Sporadic, Historical, <10 yr	First	High	<5000 ha	>75%	High	Potable Water	25% to 75%	High	27
Malahat Benchlands	Tributary	E295317	Sporadic, Historical, <10 yr	Second	Medium	<5000 ha	25% to 75%	Medium	Potable Water	<25%	Medium	8
Nitinat River	Mainstem	E226221	Intermittent, Historical, <5yr	First	Medium	>40,000 ha	25% to 75%	High	Salmon	>75%	Medium	12
Sansum Narrows	Mainstem	E291153	Sporadic, Historical, <10 yr	First	High	<5000 ha	<25%	Low	Potable Water	>75%	High+	12
Satellite Channel Benchlands	Mainstem	E294422	Sporadic, Historical, <10 yr	≥Third	Low	<5000 ha	>75%	High	Potable Water	25% to 75%	High	9
Satellite Channel Benchlands	Mainstem	E291150	Sporadic, Historical, <10 yr	Second	Medium	<5000 ha	<25%	Low	Potable Water	25% to 75%	High	6
Satellite Channel Benchlands	Mainstem	127217	Intermittent, Historical, <5yr	First	Medium	<5000 ha	>75%	High	Potable Water	25% to 75%	High	18
Shawnigan Creek	Lake	1199901	Continuous, Recent, >10 yr	First	High+	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Shawnigan Creek	Lake	1199902	Continuous, Recent, >10 yr	Second	High+	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Shawnigan Creek	Lake	1199903	Continuous, Recent, >10 yr	≥Third	High	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	36
Shawnigan Creek	Lake	1199904	Continuous, Recent, >10 yr	≥Third	High	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	36
Shawnigan Creek	Mainstem	E294421	Continuous, Recent, >10 yr	First	High+	<40,000 ha	>75%	High+	Potable Water	25% to 75%	High	48
Shawnigan Creek	Mainstem	E236520	Sporadic, Historical, <10 yr	Second	Medium	<40,000 ha	25% to 75%	Medium	Potable Water	<25%	Medium	8
Shawnigan Creek	Tributary	E294425	Sporadic, Historical, <10 yr	≥Third	Low	<40,000 ha	<25%	Low	Potable Water	25% to 75%	High	4
Stocking Creek	Lake	E206290	Sporadic, Historical, <10 yr	First	High	<5000 ha	>75%	High	Potable Water	>75%	High+	36
Yellowpoint Benchlands	Mainstem		Intermittent, Historical, <5yr	First	Medium	<5000 ha	25% to 75%	Medium	Potable Water	<25%	Medium	8

** Lake or Mainstem or Tributary: A mainstem flows to the ocean, a tributary joins another creek prior to marine discharge

Appendix B

Appendix B

Table B.1 Surface Water Monitoring Sites Periods of Record and Sample Numbers by Year

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
Bonsall Creek	NEW	NA	NA	NA	NA	NA	NA	NA
Chemainus Benchlands	1100871	1979	159	30	125	30	117	30
		1980	55	9	42	9	42	9
		1981	14		13		13	13
		1984	3	3				3
		1988	3	3				3
		1992	2	2				
		1994	13	2	11		11	2
		2004	19	19	16	3	19	19
		2005	16	16	16		16	16
		2009	2	2		2		2
		2012	2			2		2
		2015	18	16	16	2	16	2
		2016	21	17	17	3	17	17
Chemainus River	120780	1986	1	1				1
		1987	2	1				1
		1988	16	14				14
		1989	11	9		1		10
		1990	1	1				1
		1995	8					4
		1999	4	2		1		2
		2000	2	1				1
		2001	2	1		1		1
		2010	1	1		1		1
		2011	26	1	1	15	1	10
		2012	6			3		3
	E283509	2010	1	1		1		1
		2011	25	1	1	14	1	9
		2012	6			3		3
	E283570	2010	1	1		1		1
		2011	25	1	1	14	1	9
		2012	6			3		3
Cowichan River	120802	1968	4	3		3	3	3

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		1969	6	6		6	6	6
		1970	6	6		6	5	6
		1971	8	8		8		8
		1972	5	5		5		5
		1973	20	5	1	5	1	12
		1974	6	4	2	4		4
		1975	7	5		2	1	5
		1976	5	3		3		3
		1977	4	2		2		2
		1978	13	6		2		6
		1979	4	2		2		2
		1980	2	1		1		1
		1981	5	2	1	2	1	3
		1982	11	4	1	2	2	6
		1983	8	2	2	2	2	4
		1984	6	2	1		2	4
		1985	11	11		1		10
		1986	15	12				12
		1987	13	12				12
		1988	21	12			1	12
		1989	21	3	3	5	6	11
		1990	23	1	4	6	8	13
		1991	10		2	5	5	3
		1992	9		4	5	4	
		1993	20	2	7	5	8	8
		1994	36	5	9		9	
		1997	6					5
		1998	25			1		10
		1999	9	1		2		5
		2000	13					2
		2001	14	1		7		1
		2002	18	8		8		8
		2003	19	10		10		10
		2008	18			9	5	9
		2010	1	1		1		1
		2011	1			1		1
		2012	13			10		
		2014	19	2		13		2

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		2017	3			3		
	E206106	1985	10	10		1		10
		1986	15	12				12
		1987	13	12				12
		1988	20	12				12
		1989	23	4	4	5	7	12
		1990	23	1	4	6	8	13
		1991	9		1	5	4	4
		1992	9		4	5	4	
		1993	20	2	7	5	8	8
		1994	30	5	9		9	
		1997	7					6
		1998	25			1		9
		1999	9	1		1		4
		2000	106			31	31	2
		2001	104	3	10	35	32	3
		2002	74	7	6	28	21	7
		2003	55	17	3	29	19	10
		2004	39	28	9	28	28	
		2005	50	30	14	30	30	19
		2006	61	30	30	30	30	30
		2007	62	31	29	31	31	31
		2008	65	32	32	32	32	32
		2009	60	30	30	29	30	30
		2010	51	25	25	25	25	25
		2011	51	24	22	25	23	25
		2012	46	22	22	34	22	22
		2013	47	29	29	29	29	29
		2014	53	24	24	24	24	24
		2015	58	29	27	29	29	29
		2016	33	29	29	29	28	29
		2017	49	26	26	27	26	26
		2018	54	27	27	27	27	27
		2019	31	25	24	25	25	25
	E206107	1985	9	9				9
		1986	8	5				5
		1987	2	1				1
		1988	10	4				4

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		1989	14		2	5	3	4
		1990	20	1	4	6	7	10
		1991	1		1		1	
		1992	10	6	4	6	4	6
		1993	20	1	7	5	8	7
		1994	31	5	9		9	
		1995	10					1
		1996	2					1
		1997	18					6
		1998	47			1		8
		1999	12	1		1		2
		2000	19					2
		2001	8	1		1		1
		2002	25	9		9		9
		2003	22	9		9		9
		2008	19			9	5	9
		2010	1	1		1		1
		2011	1			1		1
		2012	14			11		
		2013	11			11		
	E206108	1985	10	10		2		10
		1986	14	12				12
		1987	12	12				12
		1988	21	12				12
		1989	19	4	1	5	1	9
		1990	22	1	4	7	7	11
		1992	9		4	5	4	
		1993	20	1	7	5	8	7
		1994	21	5	9		9	
		1995	15		4		4	1
		1996	3					2
		1997	7					6
		1998	24					8
		1999	8	1		1		4
		2000	14					2
		2001	12			6		
		2002	18	8		8		8
		2003	19	10		10		10

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		2008	19			9	5	9
		2012	14			11		
		2013	11			11		
		2014	10	1		5		1
		2015	9	5	2	5	2	5
	E207466	1988	9	4				4
		2010	9	9	9		9	9
		2014	10	10	10			
		2015	15	9	9		9	9
		2016	20	15	15	2	15	15
		2017	22	17	18	3	18	17
		2018	23	9	18	1	18	10
		2019	4	2	2	4	2	2
	E217507	1994	2	2				
		2008	152	152	138	14	138	152
		2009	3	3		3		3
		2010	36	36	33	3	33	36
		2013	71	62	62	9	62	71
		2014	24	21	21	3		3
		2015	32	28	28		28	28
		2016	82	75	75	3	75	75
		2017	58	54	55	2	55	54
		2018	82	27	79	1	79	27
		2019	30	1	28	4	28	2
	E217508	1994	2	2				
		2008	164	164	150	14	150	164
		2009	3	3		3		3
		2010	37	37	34	3	34	37
		2013	76	67	67	9	67	63
		2014	24	21	21	3		3
		2015	33	29	29		29	29
		2016	89	82	82	3	82	82
		2017	56	54	55		55	54
		2018	82	27	79		79	27
		2019	30	1	28	4	28	2
	E217509	1994	2	2				
		2008	168	168	156	12	156	168
		2009	3	3		3		3

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		2010	62	62	59	3	59	62
		2013	88	78	78	10	78	88
		2014	24	21	21	3		3
		2015	34	30	30		30	30
		2016	113	106	106	3	106	106
		2017	58	54	55	2	55	54
		2018	58	27	55	1	55	27
		2019	4	1	2	4	2	2
	E234124	1998	11					2
		1999	5					2
		2000	12					1
		2010	1	1		1		1
		2011	1			1		1
		2012	15			12		
		2013	10			5		
		2014	1	1		1		1
	E243577	2001	2	1		1		1
		2002	3	2		2		2
		2011	10	10	8	2	8	10
		2012	2			2		2
		2014	11	11	9	2		2
Holland Creek	E217163	1992	16			16		16
		1993	7			7		7
Koksilah River	123981	1971	2			2		
		1972	7	2	4	5	4	4
		1973	5	1		2	1	1
		1974	8	3		3		3
		1975	5	3		2		4
		1976	4	2		2		2
		1977	4	2		1		2
		1978	7	2		2		2
		1979	4	2		2		2
		1980	2	1		1		1
		1981	5	2		2	1	2
		1982	8	2	2	2	2	4
		1983	7	2	2	1	2	4
		1984	5	2	1		2	4
		1985	7	6			1	7

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		1986	13	12				12
		1987	13	12				11
		1988	22	11			1	12
		1989	25	5	3	5	5	14
		1990	13		4	5	6	6
		1992	9		4		4	
		1993	21	1	7	5	9	3
		1994	25	5	9		9	
		1998	17					7
		1999	5					5
		2000	102			30	30	2
		2001	108		10	38	32	
		2002	69	6	7	26	20	6
		2003	52	10	1	30	20	10
		2004	31	21		28	28	
		2005	51	31	5	31	31	20
		2006	62	31	29	31	31	31
		2007	62	31	28	31	30	31
		2008	64	31	30	31	31	31
		2009	60	30	29	29	29	30
		2010	14	9	9	9	9	9
		2012	14			11		
		2017	3			3		
	E207425	1988	19	8	1		3	9
		1989	25	5	3	4	5	14
		1990	15		4	5	6	6
		1992	9		4		4	
		1993	20	2	7	5	8	3
		1994	25	5	9		9	
		1998	9					2
		1999	34			3		12
		2000	13					2
		2001	12			6		
		2002	21	11		11		11
		2003	19	10		10		10
		2008	19			9	5	9
		2010	1	1		1		1
		2012	16			11		

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
	E207426	1988	6	4			1	4
		1989	15	5	1		2	9
		1990	2				1	1
	E207427	1988	1	1				1
		1989	22	7	1	2	2	15
		1990	9		2	1	4	5
		1998	24					11
		2002	16	6		6		6
		2003	19	10		10		10
		2008	19			9	5	9
		2012	14			11		
		2017	3			3		
	E207433	1988	15	7	1		3	7
		1989	24	6	3	4	4	14
		1990	14		4	5	6	7
		1998	23					10
		1999	2					2
		2002	16	6		6		6
		2003	19	10		10		10
		2008	19			9	5	9
		2012	56			32		
		2017	3			3		
Malahat Benchlands	1100161	1973	1			1	1	1
		1984	8	4		4		4
		1985	62	13	32	10	35	14
		1986	79	13	43		53	13
		1987	58	12	33		34	11
		1988	44	12	20		24	12
		1989	57	12	19		32	12
		1990	29	12	14		14	12
		1991	54	16	22		38	16
		1992	12	11		1		
		1993	3	3				
	E294428	2013	11			11		
		2018	11	10		10		
	E295317	2013	5			5		
		2018	1				1	
		2019	1				1	1

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
Nitinat River	E226221	1997	13	4	1	4	1	4
Sansum Narrows	E291153	2012	5			5		
Satellite Channel	127217	1986	1	1				1
		1992	1					1
		1995	27	3	1		1	10
	E291150	2012	7			7		
		2017	4			4		
	E294422	2013	5			5		
		2018	6	5		5		
Shawnigan Creek	1199901	1976	72	52	53		53	18
		1977	152	28	99	4	115	28
		1978	278	26	234	7	242	26
		1979	76	9	52	3	66	9
		1980	74	9	59	9	57	9
		1981	15		15		15	15
		1982	1	1		1		1
		1984	42	2	32	2	32	2
		1986	6				4	
		1987	13		9		9	
		1988	3	3				3
		1989	10				7	
		1992	3	3				
		1993	2	2				2
		1994	10	2	8		8	2
		1995	7	2		2		2
		1997	4	2		2		2
		1998	2	1		1		1
		1999	3	2		2		2
		2000	78	2		2		2
		2001	78	3		3		2
		2002	5	2		2		1
		2003	177	125	143	27	143	143
		2004	17	17	13	3	14	13
		2005	34	34	31	3	31	34
		2006	28	28	25	3	25	28
		2007	19	19	17	2	17	19
		2008	118	118	102	16	102	118
		2010	21	21	18	3	18	21

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		2013	88	78	78	10	78	88
		2014	24	21	21	3		3
		2018	100	89	90	6	90	84
		2019	31	27	27	4	27	31
	1199902	1976	76	40	63		62	13
		1977	101	22	70	2	70	22
		1978	216	25	179	6	186	25
		1979	53	7	45	3	44	7
		1980	26	3	21	3	21	3
		2003	175	118	139	27	139	136
		2004	22	22	19	3	19	19
		2005	23	23	20	3	20	23
		2006	22	22	19	3	19	22
		2007	26	26	22	4	22	26
		2008	117	117	100	17	100	117
		2010	24	24	21	3	21	24
		2013	72	63	63	9	63	72
		2014	24	21	21	3		3
		2018	73	62	62	8	62	69
		2019	22	20	20	2	20	22
	1199903	1976	6	4				4
		1977	14	8		2		8
		1978	19	11		3		11
		1979	2	1				1
		1984	1	1		1		1
		2001	2	1		1		
		2003	121	79	94	20	94	93
		2004	13	13	11	2	11	11
		2005	13	13	11	2	11	13
		2006	12	12	10	2	10	12
		2007	11	11	9	2	9	11
		2008	60	60	50	10	50	60
		2010	12	12	10	2	10	12
		2013	39	33	33	6	33	39
		2014	13	11	11	2		2
		2018	42	32	32	5	32	37
		2019	13	10	10	3	10	13
	1199904	1977	3	3		2		3

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		1978	15	10		3		10
		1979	2	1				1
		1984	1	1		1		1
		2002	4	2		2		
		2003	114	65	75	22	85	80
		2004	14	14	12	2	12	12
		2005	16	16	14	2	14	16
		2006	17	17	15	2	15	17
		2007	16	16	14	2	14	16
		2008	86	86	77	9	77	86
		2010	16	16	14	2	14	16
		2013	52	46	46	6	46	52
		2014	22	20	20	2		2
		2018	56	49	47	5	47	51
		2019	16	14	14	2	14	16
	E236520	2013	21			11		
		2018	11	10		10		
	E294421	2013	11			9		
		2018	11	10		10		
	E294425	2013	11			11		
		2016	14	13		14		13
		2017	5	5		5		5
Stocking Creek	E206290	1985	22	10	12	6	12	10
		1986	82	11	48		60	11
		1987	77	12	52		53	11
		1988	72	12	44		52	11
		1989	75	12	32	1	50	12
		1990	42	11	30		30	11
		1991	95	12	63		83	12
		1992	22	21		1		
		1993	50	13	37	13	37	
		1994	119	14	97	14	101	
		1995	38	4	33	4	33	
		1997	4	2		2		2
		1998	4	2		2		2
		2001	3	2				2
		2002	11			5		5
		2003	37	18	16	10	16	26

Watershed	EMS_ID	Year	Total Samples	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Temperature (°C)	рН
		2004	6			3		3
		2005	25	25	23	2	23	25
		2007	14			7		7
		2008	30	17	14	9	14	23
		2011	25	25	22	3	22	25
Yellowpoint Benchlands	NEW	NA		NA	NA	NA	NA	NA